skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pardyjak, Eric_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Numerical model predictions of precipitation rates rely heavily on representations of how fast hydrometeors fall, assuming settling is determined only by the opposing force balance of gravity and drag. Here, we use a novel suite of ground‐based winter measurements to show large departures of the mean snowflake settling speed from the terminal fall speed of a particle falling broadside. Where is lower than the air root‐mean‐square turbulent velocity fluctuation , settling is sub‐terminal by up to a factor of five, and if it is higher, then settling is super‐terminal by up to a factor of three. Mean winds and aerodynamic lift appear to play an unexpectedly important role, by tilting snowflake orientations edge‐on while slowing their mean rate of descent. New parameterizations are provided for relating winds and small‐scale turbulence to hydrometeor orientations, drift angles, and precipitation rate reductions and enhancements. 
    more » « less